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E2F1 and p53 Are Dispensable, whereas p21Waf1/Cip1

Cooperates with Rb to Restrict Endoreduplication
and Apoptosis during Skeletal Myogenesis
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Xudong Liu,* Simon Bubnic,* Armand Keating,* David Murray,†
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We describe temporal and genetic analyses of partially rescued Rb mutant fetuses, mgRb:Rb2/2, that survive to birth and
reveal specific defects in skeletal muscle differentiation. We show that in the absence of Rb, these fetuses exhibit increased
apoptosis, bona fide endoreduplication, and incomplete differentiation throughout terminal myogenesis. These defects were
further augmented in composite mutant fetuses, mgRb:Rb2/2:p212/2, lacking both Rb and the cyclin-dependent kinase
inhibitor p21Waf1/Cip1. Although E2F1 and p53 mediate ectopic DNA synthesis and cell death in several tissues in Rb mutant
mbryos, both endoreduplication and apoptosis persisted in mgRb:Rb2/2:E2F12/2 and mgRb:Rb2/2:p532/2 compound

mutant muscles. Thus, combined inactivation of Rb and p21Waf1/Cip1 augments endoreduplication and apoptosis, whereas
E2F1 and p53 are dispensable during aberrant myogenesis in Rb-deficient fetuses. © 2000 Academic Press
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INTRODUCTION

The retinoblastoma tumor suppressor, Rb, is a transcrip-
tional cofactor whose phosphorylation and activity oscil-
late during the cell cycle under control of cyclin-dependent
kinases (Cdks) (Sherr and Roberts, 1999). The Cdks and
their associated G1 cyclins are subject to noncatalytic
inhibition by specific cyclin-dependent kinase inhibitors
(CKIs; e.g., p16) and universal CKIs (e.g., p21, p27, p57)
(Sherr and Roberts, 1995). During most of the G1 phase of
the cell cycle, Rb suppresses the expression of genes re-
quired for progression into, and execution of, the DNA
replication phase by forming specific complexes with cer-
tain transcription factors, such as E2F1 (Nevins et al., 1997;
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Dyson, 1998). Following its phosphorylation prior to a
restriction point late in G1, Rb dissociates from its partners
and the progression into S phase is allowed. In addition to S
phase, E2F1 also induces apoptosis when overexpressed in
vitro (DeGregori et al., 1997; Wu and Levine, 1994). Free
E2F1 can transcriptionally activate p19ARF, which stabilizes
53 by debilitating the function of its regulator MDM2,
hereby linking mutations in Rb to p53-dependent apopto-
is, at least in some tissues (Bates et al., 1998; Pomerantz et
l., 1998). Indeed, Rb and p53 are often inactivated in
uman cancer, leading to deregulation of the cell cycle and
urvival of the transformed state (Gottlieb and Oren, 1998).
Mice lacking functional Rb die at midgestation and

xhibit ectopic DNA synthesis, apoptosis, and incomplete
ifferentiation during neurogenesis, erythropoiesis, and
ens development (Clarke et al., 1992; Jacks et al., 1992; Lee
t al., 1992, 1994; Macleod, 1999; Mulligan and Jacks,
998). This spectrum of defects is consistent with the
estricted pattern of expression of Rb during embryogenesis

n the nervous system, lens, liver, and skeletal muscles
Jiang et al., 1997). Studies on the role of Rb during terminal
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29Genetic Analysis of Myogenesis in Rb Mutant Mice
myogenesis, which occurs after Rb2/2 embryos die, were
made possible in fetuses partially rescued to birth by a Rb
minigene (Zacksenhaus et al., 1996). At embryonic day (E)
17.5, these mutant fetuses express the transgenic Rb pro-
tein in the brain but not in muscles or other tissues
(Zacksenhaus et al., 1996). The partially rescued mgRb:

b2/2 fetuses exhibit severe skeletal muscle defects, in-

FIG. 1. Temporal analysis of aberrant myogenesis in Rb mutant
etuses and control littermates (original magnification1003). Larg
ccumulate during late fetal development. (G, H) PCNA staining o
ithin myotubes. (I–K) TUNEL analysis of neck muscles reveals ce
CK gene expression in E14.5–E18.5 mgRb:Rb2/2 fetuses and wi

hybridization analysis of mgRb:Rb2/2 mutant fetuses and control
Shown are bright-field images in which silver grains appear as
double-mutant fetus. Abbreviations: H, heart; D, diaphragm; L, lu
luding increased cell death and shorter myotubes, ectopic
NA synthesis, the appearance of giant nuclei in residual
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yotubes, and expression of early skeletal muscle struc-
ural genes (myosin heavy chain and cardiac actin) but not
ate muscle markers (MCK and MRF4).

Inactivation of both Rb and E2F1 results in extension of
ife span by several days and inhibition of apoptosis in lens
nd central nervous system (CNS) but to a lesser extent in
he peripheral nervous system (PNS) (Tsai et al., 1998).

ryos. (A–F) H&E staining of intercostal muscles from Rb mutant
clei, indicated by arrowheads, are evident as early as E15.5 and
k muscles (1003). Mutant muscles contain PCNA-positive nuclei
ath throughout terminal myogenesis (403). (L) RT-PCR analysis of
pe littermates with b-actin as internal control. (M–P, R–U) In situ
rmates, using 35S-labeled MCK or myogenin antisense riboprobes.
k dots. (Q) Expression of MCK in E17.5 mgRb:Rb2/2:p212/2

, intercostal muscles; T, tongue.
emb
e nu
f bac
ll de
ld-ty
litte
poptosis in the lens and CNS, but not the PNS, is also
ediated by a p53-dependent pathway (Macleod et al.,
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30 Jiang et al.
1996). Accordingly, mutations in p53 increase the spectrum
of tumors in Rb1/2:p532/2 double mutants relative to
Rb1/2 heterozygote mice (Williams et al., 1994a). In addi-
tion to apoptosis, p53 can also induce cell cycle arrest by
direct transcriptional activation of the Cdk inhibitor
p21Waf1/Cip1. p53-dependent activation of p21 following
g-irradiation leads to cell cycle arrest by inhibiting phos-
phorylation of Rb (Brugarolas et al., 1999). Notably,
g-irradiation or overexpression of p21 in vitro induces cell
cycle arrest in Rb-positive cells but endoreduplication in
cells lacking Rb (Niculescu et al., 1998). p21 (as well p16)
an also suppress apoptosis during myoblast differentiation
n vitro through Rb or other pathways (e.g., AKT; Wang and

alsh, 1996; Fujio et al., 1999).
Since components of the Rb pathway exhibit tissue-

pecific effects, the analysis of the Rb pathway in particular
issues is important in understanding normal development
s well as neoplastic transformation of specific cell lin-
ages. To determine the role of E2F1, p53, and p21Waf1/Cip1 in

the aberrant myogenesis in mgRb:Rb2/2 embryos, we
performed a temporal and genetic analysis on compound
mutant mice lacking Rb and E2F1, p53, or p21Waf1/Cip1. Our
results show that ectopic DNA synthesis and apoptosis in
Rb-deficient muscles are mediated by a pathway, yet to be
defined, which is independent of E2F1 or p53. Inactivation
of both Rb and p21Waf1/Cip1 leads to increased endoreduplica-
ion and apoptosis, indicating that these two negative
egulators cooperate to facilitate cell cycle exit during
erminal myogenesis.

MATERIALS AND METHODS

Intercrosses and Genotyping

The mgRb:Rb1/2 mice and p532/2, E2F12/2, and p212/2
knockout mice were described previously (Brugarolas et al., 1995;
Field et al., 1996; Jacks et al., 1994; Zacksenhaus et al., 1996). For
timed pregnancy, the morning of vaginal plug observation was
considered E0.5. In the experiments described below, we analyzed
three to six double-mutant embryos, mgRb:Rb2/2 mutants, and
control littermates in every assay. All mutant embryos were
genotyped in duplicates using DNA extracted separately from limb
and tail biopsies. Tissues were treated overnight with proteinase K
(400 mg/ml) at 55°C. The DNA was extracted once with phenol:
hloroform (1:1) by shaking for 1 h in a mixer (Fisher; Model 5432)
ollowed by centrifugation, isopropanol precipitation, one wash in
0% ethanol, and resuspension in 100 ml TE buffer (10 mM Tris z

Cl, pH 8.0, 1 mM EDTA). PCRs included DNA 2 ml, MgCl2 (25
mM) 3 ml, PCR buffer (103 100 mM Tris z HCl, pH 8.3, 500 mM
KCl) 5 ml, dNTP (10 mM) 1 ml, gelatin (2 mg/ml) 2.5 ml, primers
200 ng/ml) 1 ml 3 2, in 50-ml reactions. PCR conditions included 30
cycles of 1 min each at 94°C (denaturation), 55–60°C (annealing),
and 72°C (extension). Primers for mgRb, Rb, E2F1, and p21 were as
described (Brugarolas et al., 1995; Field et al., 1996; Zacksenhaus et
l., 1996). The primers for p53 were p53-1 (59-GTA TCT GGA AGA
AG GCA GAC) and p53x7 (59-GAT GGT GGT ATA CTC AGA

CC), for wild-type allele, and neo-2 (59-TCC TCG TGC TTT
CG GTA TCG) and p53x7 for mutant allele. m

Copyright © 2000 by Academic Press. All right
Histology and Immunohistochemistry

Embryos were embedded in 4% paraformaldehyde in PBS, dehy-
drated, paraffin embedded, and cut at 4–5 mm for hematoxylin and
eosin (H&E) staining, fluorescence in situ hybridization (FISH), and
image cytometry and 8 mm for TUNEL, immunohistochemistry,
and in situ hybridization. Immunohistochemical analysis of myo-
sin heavy chain (Fast) and PCNA was performed with monoclonal
antibodies (Sigma) at 1:300 dilution followed by biotin-labeled
anti-mouse and ABC kit from DAKO.

RNA in Situ Hybridization and Reverse
Transcription-PCR

In situ hybridization analysis for Rb, MCK, myogenin, p21, and
other markers was performed as described (Jiang et al., 1997). All
probes were used at 2 3 105 cpm/ml with the exception of
cardiac-actin and MCK probes, which were used at 5 3 104 cpm/ml.
The slides were coated with emulsion and exposed for 10–20 days.
RT-PCR analysis (25 cycles) of MCK was performed with forward
primer EZ211 (59-CAG ACA AGC ATA AGA CCG) at nt 379 and
reverse primer EZ212 (59-TTG TCG TTG TGC CAG ATG) at nt
737, yielding a fragment of 359 bp.

Apoptosis Analysis

Sections were deparaffinated and hydrated by two changes of
xylenes, 5 min, followed by 100, 96, 90, and 80% ethanol and
ddH2O for 3 min each. For nuclear condensation analysis, sections
were treated with Hoechst 33258 (Sigma; 0.5 mg/ml in water) for 30
min, washed, and observed under fluorescence microscope. For
TUNEL analysis, we used the following modified procedure (Gav-
rieli et al., 1992). For nuclei stripping, slides were immersed in 13
PBS for 5 min and then incubated for 2 min with 5 mg/ml proteinase
K in PBS. The sections were rinsed 1 3 1 min and 2 3 5 min in PBS
and then 2 3 5 min in ddH2O. For H2O2 treatment, sections were
covered with 3% H2O2 for 15 min and then rinsed with ddH2O
twice for 2 min and once for 5 min. For equilibration, the sections
were covered with 13 TdT buffer with Na-cacodylate (supplied
with the TdT enzyme; Boehringer Mannheim) and BSA 0.25 mg/ml
using Parafilm as coverslips for 30 min. For the reaction, the
equilibration buffer was removed and replaced by the same buffer
containing 10 mM Bio-16–dUTP (Boehringer Mannheim) and 0.25

/ml TdT (Boehringer Mannheim) with the same coverslips in
humid atmosphere for 60 min at 37°C. For termination of the
reaction, the slides were washed twice for 15 min in prewarmed 43
SSC buffer at 37°C. The slides were further washed 2 3 5 min in
PBS and 2 3 5 min in PBS-T (PBS plus 0.1% Triton X-100) at room
temperature. ABC reagent (DAKO) was prepared according to the
manufacturer’s instructions in PBS-T and added for 30 min. Slides
were washed 2 3 5 min in PBS-T and 2 3 5 min in PBS. One
milliliter of DAB (39,39-diaminobenzadine) solution was made by
mixing 50 ml of DAB (2.5 mg/ml in 0.1 M NaPO4, pH 7.6), 23 ml of
1% NiCl2, 1 ml of H2O2 in NaPO4, pH 7.6. Slides were treated with
DAB for 10 min and washed extensively with tap water. Counter-
staining with methyl green (0.5% w/v in 0.1 M Na-acetate, pH 4.0)
was done for 30 s, followed by several washes with tap water, 2 3

30 s in 100% butanol and 2 3 3 min in xylenes. The slides were

ounted with Permount (Fisher).
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31Genetic Analysis of Myogenesis in Rb Mutant Mice
Bone Staining

Embryos were fixed in 95% ethanol. Following genotype analy-
sis by PCR, the skin and viscera were carefully removed and the
skeleton was incubated in 1 vol of acetic acid, 4 vol of 95% ethanol,
and 7.5 mg Alcian blue (Sigma) per 50 ml to stain ossification
centers (Lufkin et al., 1992). After 24 h, the solution was removed,
and the skeleton was washed in 95% ethanol for 1 h and then with
2% (original protocol) or 1% (modified protocol) KOH for 24 h.
Staining of cartilage in Alizarin red (Sigma) in 1% KOH was done
overnight followed by clearing in 20% glycerol, 1% KOH for a
week with daily changes. Skeletons were finally stored in 50%
glycerol, 50% ethanol.

Image Cytometry

Sections of 5 mm were dewaxed, rehydrated, and then stained by
standard Feulgen technique using the Quantitative DNA Staining
it (Becton–Dickinson Cellular Imaging System, San Jose, CA; Cat.
o. 54100140). Image cytometry analysis was performed with the
AS 200, a video-based interactive image cytometer (Becton–
ickinson) (Bacus and Bacus, 1994; Berezowsky et al., 1995). After

nstrument calibration using CAS control slides provided by the
anufacturer, microscopic fields of muscle tissue were randomly

elected. Within each field, all the isolated nuclei were picked
anually. In order to get the largest number of nuclei from each
eld, manually drawn boundaries were necessary in many cases to
ssist the software in picking up single nuclei. Ten to twenty fields
ere selected and more than 300 nuclei for each section were

nalyzed in total. The images of selected nuclei were digitized and
he optical densities and images recorded. The integrated optical
ensity of each Feulgen-stained nucleus was considered propor-
ional to the amount of DNA per nucleus. The optical density was
onverted into the weight of DNA, and a histogram of all processed
uclei, as well as a scatter plot, was generated by the software. For
better comparison, the processed nuclei for each sample were

ubclassified into five groups based on their DNA content: class 1
less than or equal to 12 pg, diploid to tetraploid), class 2 (between
2 and 24 pg), class 3 (between 24 and 48 pg), class 4 (between 48
nd 96 pg), and class 5 (more than 96 pg).

Fluorescence in Situ Hybridization (FISH)

Genotype analysis of mouse Y chromosome by PCR with prim-
ers specific to the Sry gene was performed with forward primer
TDY1, 59-GAC TGG TGA CAA TTG TCT AG, and reverse primer
TDY2, 59-TAA AAT GCC ACT CCT CTG TG, with male samples
generating a product of 292 bp (Gubbay et al., 1990). The mouse Y
chromosome paint probe (biotin-labeled) (Breneman et al., 1993)

as purchased from Cedarlane Laboratories (Cat. No. 1187-YMB-
2). All other reagents were from Oncor (tissue kit, S1337-TC;
etection kit biotin–FITC, S1333-BF; and hybridization kit, S1340-
it). The procedures were performed as recommended by the
anufacturers with minor modifications (available upon request).
he slides were finally mounted with 9 ml of DAPI (2.5 ng/ml) and
3 ml of PI (0.1 mg/ml) in anti-fade and observed under fluorescence
microscope (Axioscope II; Zeiss).

Copyright © 2000 by Academic Press. All right
RESULTS

Temporal Analysis of Aberrant Myogenesis in Rb
Mutant Fetuses

We previously described the generation and analysis of
partially rescued Rb mutant fetuses, in which the neuro-
genic defect in Rb2/2 embryos is specifically rescued by a
Rb minigene, mgRb (Zacksenhaus et al., 1996). Recent
analysis of Rb promoter–lacZ transgenic mice (Jiang et al.,
2000) indicates that the same Rb promoter used to generate
the mgRb minigene can direct transgene expression exclu-
sively to the developing nervous system but not to other
tissues, such as liver and skeletal muscles, where endoge-
nous Rb is normally expressed (Jiang et al., 1997). The

gRb:Rb2/2 fetuses can therefore be viewed as null for Rb
throughout myogenesis. Our previous analysis identified
major skeletal muscle defects in E17.5–E18.5 mgRb:Rb2/2
fetuses. To address the temporal consequences of Rb loss
during terminal myogenesis, mgRb:Rb2/2 embryos were
analyzed from E13.5 to E18.5 (Fig. 1). H&E staining revealed
that large nuclei accumulated within myotubes; there were
very few large nuclei at E13.5–E14.5 but they were clearly
detected by E15.5 (Figs. 1A and 1B); and by E18.5 more than
20% of the myotube nuclei appeared abnormally enlarged
(Fig. 1F). The formation of large nuclei was accompanied by
ectopic DNA synthesis within the myotube as detected by
staining with antibodies specific to the proliferating cell
nuclear antigen PCNA (Figs. 1G and 1H, also see below).
Thus, in the absence of Rb, myotubes are unable to perma-
nently withdraw from the cell cycle and instead reenter S
phase and accumulate large nuclei. Concomitant with this
abnormal cell cycle exit, there was a marked increase in cell
death throughout terminal myogenesis (Figs. 1I–1K).

The cellular abnormalities described above were accom-
panied by specific reduction in expression of the late
muscle marker, muscle creatine kinase (MCK) (Fig. 1L), but
not early muscle markers such as myosin heavy chain
(MHC), myogenin, and cardiac actin (see below). Some low
levels of MCK transcripts were, however, detectable by
RT-PCR analysis at E16.5–E18.5 even in mutant fetuses
(Fig. 1L). To determine whether the reduction in MCK gene
expression affected all or a subset of myotubes, we per-
formed in situ hybridization analysis on sagittal sections of
mutant and control littermates. Expression of MCK was
uniformly reduced in mgRb:Rb2/2 mutant embryos at
E13.5–E15.5 (Figs. 1O and 1P and data not shown), but
progressively elevated and readily detectable in E16.5–E18.5
fetuses (Figs. 1R–1U). In contrast, expression of cardiac
actin (not shown) and myogenin (Figs. 1M and 1N) was
unaffected as determined by in situ hybridization on adja-
cent sections. The results indicate that Rb is required for
the proper transcriptional activation of MCK during myo-
genesis but despite the excessive apoptosis and ectopic
DNA synthesis, a low level of kinase expression was

gradually attained during late fetal development even in the
absence of Rb.

s of reproduction in any form reserved.
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Nuclei in mgRb:Rb2/2 Myotubes Undergo
ndoreduplication and Become Polyploid

The giant nuclei in the Rb-deficient myotubes could
reflect nonspecific DNA repair/synthesis or polyploidy due
to genuine endoreduplication. To address the nature of
these nuclei, we first stained histology sections with Feul-
gen reagent, which provides a quantitative, linear staining
in proportion to the amount of DNA in the nuclei (see
Materials and Methods). Microscopic observations readily
detected large nuclei in muscle areas but not in other
tissues in mutant fetuses (Figs. 2A–2C). Image cytometry
analysis revealed that nuclei from normal E18.5 skeletal

FIG. 2. mgRb:Rb2/2 myotubes undergo endoreduplication and b
and Rb mutant fetuses (B, C) stained by the Feulgen technique. No
muscles (arrows). (D–F) Image cytometry analysis of E18.5 control (D
muscles contain nuclei with DNA mass of 2N to .32N. (G) Sca
relationship between large nuclei and DNA mass. (H–M) Fluores
myotube nuclei of E18.5 control and mutant fetuses. Fetuses were
and analyzed as described under Materials and Methods. (H) A con
showing single focus of staining per nuclei along the myotubes. (J)
of mgRb:Rb2/2 male mutant fetuses with large nuclei (demarcate
muscles displayed a DNA content of 2N–4N (Fig. 2D). This
DNA distribution represented postmitotic nuclei in myo-

Copyright © 2000 by Academic Press. All right
ubes and mitotic nuclei from myoblasts and other cell
ineages that overlapped the muscle fibers. In contrast, a
raction of the nuclei from mgRb:Rb2/2 muscles had a

DNA content of more then 4N (Figs. 2E and 2F). Remark-
ably, some nuclei contained more than 32N chromosomes,
presumably due to more than five successive DNA replica-
tions without intervening mitosis. A scatter-plot analysis
comparing DNA mass and nuclear size revealed a linear
relationship (Fig. 2G), thus establishing that the nuclei with
excess DNA are the giant nuclei.

We next used FISH to determine whether the excess
DNA in the large nuclei in mgRb:Rb2/2 fetuses was

e polyploid. (A–C) Images of E18.5 muscle sections of control (A)
e disorganized appearance and abnormally large nuclei in mutant

d Rb mutant muscles from trunk (E) and tongue (F). The Rb mutant
plot analysis of E18.5 mgRb2/2 mutant fetuses revealing direct
e in situ hybridization analysis with Y chromosome painting of
yped with primers for the mouse Y-chromosome-specific Sry gene
emale fetus showing no positive signal. (I) A wild-type male fetus
I staining of the FISH image shown in (K). (K–M) Three examples
ntaining multiple Y chromosomes.
ecom
te th
) an
tter-
cenc
genot
trol f
organized into multiple, distinct chromosomes. Embryos
were sexed by PCR with primers for the mouse
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33Genetic Analysis of Myogenesis in Rb Mutant Mice
Y-chromosome-specific Sry gene (Gubbay et al., 1990, see
Materials and Methods). Tissue sections were then hybrid-
ized with a biotin-labeled Y chromosome paint and treated
with DAPI plus propidium iodide (PI) to stain the Y chro-
mosomes and nuclei, respectively. Sections from female
fetuses produced no signal (Fig. 2H), whereas normal male
fetuses revealed a regular pattern of nuclei along the myo-
tube with a single focus of staining per nucleus (Fig. 2I). In
contrast, large nuclei from mgRb:Rb2/2 male fetuses con-
tained several foci of staining, indicative of multiple Y
chromosomes (Figs. 2J–2M). Thus, in the absence of Rb,
nuclei in residual myotubes are unable to permanently
withdraw from the cell cycle and instead undergo endoredu-
plication and become polyploid.

Increased Endoreduplication and Apoptosis in
Composite Mutant Fetuses Lacking both Rb and
p21Waf1/Cip1

The observed endoreduplication in mgRb:Rb2/2
muscles could be mediated by a G2 block exerted by
p21Waf1/Cip1, as ectopic expression of this CKI leads to en-
oreduplication in Rb-deficient cells but not Rb-positive
ells in vitro (Niculescu et al., 1998). Furthermore,
21Waf1/Cip1 was readily detected by in situ hybridization in

skeletal muscles of normal fetuses and might be even
slightly elevated in mgRb:Rb2/2 mutant littermates (Figs.
3A–3B). To determine whether endoreduplication in mgRb:

Waf1/Cip1

FIG. 2—
Rb2/2 fetuses was mediated by p21 , we generated
and analyzed mgRb:Rb2/2:p212/2 compound mutant fe-

Copyright © 2000 by Academic Press. All right
tuses. Some mgRb:Rb2/2:p212/2 fetuses harvested at
E18.5 appeared unwell with patches of hemorrhage, indi-
cating that loss of both genes had an adverse effect on
development. We therefore recovered mgRb:Rb2/2:
p212/2 mutant fetuses at E16.5–E17.5 (frequency 7/117 5
5.9%), at stages when the compound mutants appeared
viable and grossly indistinguishable from mgRb:Rb2/2
single-mutant littermates. Additional compound mutant
fetuses were generated by mating mutant mice homozy-
gous for p21Waf1/Cip1 (i.e., mgRb:Rb1/2:p212/2).

PCNA staining of the mgRb:Rb2/2:p212/2 double-
mutant muscles readily detected large positive nuclei
within myotubes, indicating that endoreduplication oc-
curred even in the absence of p21Waf1/Cip1(Figs. 3E and 3F). To
uantify the effect of p21 on endoreduplication, we per-
ormed image cytometry analysis on single and compound

utant muscles (Fig. 3G). On average, there were over
wice as many nuclei with 32N chromosomes (class 4) and
ine times more nuclei with .32N chromosomes (class 5)
n mgRb:Rb2/2:p212/2 tongue muscles compared with

mgRb:Rb2/2 littermates (Fig. 3G).
Immunohistochemical analysis with antibody specific to

MHC revealed that myotubes in E16.5 mgRb:Rb2/2:
p212/2 fetuses were generally shorter and more disorga-
nized than in single-mutant fetuses (Figs. 4A–4C). Expres-
sion of MCK was also reduced in the compound mutant
fetuses (Fig. 1Q). Some large nuclei in the mgRb:Rb2/2:
p212/2 embryos appeared to collapse (Figs. 4C, 4F, 4I, and

tinued
4L, red and yellow arrowheads; Fig. 3F, arrow) and may
represent retraction of the myotubes, apoptosis, or mitotic

s of reproduction in any form reserved.
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catastrophe. Nuclear staining with the fluorescent dye
Hoechst 33258 revealed multiple nuclei with chromatin
condensation in mgRb:Rb2/2 and mgRb:Rb2/2:p212/2
muscles but very few in wild-type fetuses (Figs. 4G–4I).
Both apoptosis and mitotic catastrophe involve nuclear and
chromatin condensation but the former is distinguished by
DNA degradation, the hallmark of programmed cell death
(Chan et al., 1999, and references therein). In situ analysis
of DNA degradation (TUNEL) revealed that some, but not
all, of the collapsed nuclei were TUNEL-positive (Fig. 4L),
thus precluding unequivocal definition of these collapsed
nuclei. There appeared to be more cell death in mgRb:
Rb2/2:p212/2 muscles than in mgRb:Rb2/2 mutants. To
quantify cell death, apoptotic nuclei were scored in several
areas from three single mutants and three compound mu-
tants at E16.5 (Fig. 4J). A moderate but significant increase
in the frequency of apoptotic nuclei was found in muscles
of mgRb:Rb2/2:p212/2 double-mutant relative to mgRb:
Rb2/2 single-mutant fetuses (t test 0.005; t critical 5
2.776). On average there were 60% more apoptotic nuclei in
muscle areas of Rb-deficient fetuses when p21 was absent.
Thus, the combined loss of Rb and p21Waf1/Cip1 during myo-
enesis leads to relatively more ectopic DNA synthesis,
hich is accompanied by increased cell death.

Enhanced Skeletal Defects in mgRb:Rb2/2:p212/2
Compound Mutant Fetuses

The mgRb:Rb2/2:p212/2 double-mutant fetuses exhib-
ited abnormal posture and hunchback that appeared more
severe than in mgRb:Rb2/2 fetuses. To test the skeletons
of mgRb:Rb2/2:p212/2 fetuses, we performed Alizarin red
and Alcian blue staining to reveal bones and cartilage,
respectively. The skeletons of mgRb:Rb2/2:p212/2 mu-
tant embryos were fragile and readily dissociated under
standard conditions, but were successfully obtained under
lower concentrations of KOH (1% instead of 2% in the
standard protocol—see Methods and Materials).

The limb bones in the mgRb:Rb2/2 and mgRb:Rb2/2:
p212/2 mutant embryos were moderately shorter com-
pared with those of control littermates (Figs. 5B vs 5A). This
defect cannot be explained merely as a delay in develop-
ment because the timing of ossification of the metacarpal
and phalangeal bones of limbs (Figs. 5A and 5B), a faithful
indicator of developmental stages, was comparable in the
mutant and wild-type animals. The humerus process (del-
toid tuberosity) was significantly less developed in mutant
fetuses and in some mutants was completely missing (Figs.
5A–5D, arrows). At higher magnification, the bones (e.g.,
scapula, Figs. 5E and 5F) of the mgRb:Rb2/2:p212/2
double-mutant fetuses appeared more perforated and the
boundaries between the ossification center and the cartilage
were not as distinct as in wild-type littermates. In wild-type
and mgRb:Rb2/2 mutant fetuses the ribs were connected

to the sternum at an angle, whereas in the double-mutant
fetuses the ribs joined the sternum perpendicularly (Figs.
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5G–5J). The upper region of the xiphoid process at the end of
the sternum was abnormal in both mgRb:Rb2/2 and
mgRb:Rb2/2:p212/2 mutant embryos (Figs. 5H and 5J,
arrows). In the double-mutant fetuses there was also abnor-
mal ossification of the sternum (Fig. 5J, upper arrow). The
abnormalities in the deltoid tuberosity and the sternum
likely represent indirect consequences of the muscle defi-
ciency in Rb-deficient fetuses, as similar bone defects are
also observed in myogenin-deficient mice (Hasty et al.,
1993). Thus, the increased skeleton abnormalities in mgRb:
Rb2/2:p212/2 double mutants compared with mgRb:
Rb2/2 single mutants further support the conclusion that
inactivation of p21Waf1/Cip1 further augments the muscle
efects in Rb-deficient fetuses.

Endoreduplication and Apoptosis in Skeletal
Muscles of Rb-Deficient Fetuses Are Independent
of E2F1 and p53

In the lens and CNS but not PNS of Rb mutant embryos,
both ectopic DNA synthesis and apoptosis are mediated by
E2F1- and p53-dependent pathways (Macleod et al., 1996;
Tsai et al., 1998). To test the roles of E2F1 and p53 in
endoreduplication and apoptosis in Rb-deficient muscles,
we generated composite mgRb:Rb2/2:p532/2 and mgRb:
Rb2/2:E2F12/2 fetuses. The mgRb:Rb2/2:E2F12/2 mu-
tant fetuses were readily obtained (6/74 5 8.1%), while
mgRb:Rb2/2:p532/2 embryos were recovered at a lower
frequency (6/137 5 4.4%), in agreement with the lethal
effect of p53 loss on some female embryos (Sah et al., 1995).

The double-mutant fetuses exhibited a hunchback ap-
pearance and only a subtle response to stimulation, similar
to mgRb:Rb2/2 single-mutant fetuses (Zacksenhaus et al.,
1996), suggesting that the absence of E2F1 or p53 did not
further rescue the mutant embryos or the muscle defects.
Accordingly, histology and PCNA-staining analyses re-
vealed no obvious differences in the morphology of the
skeletal muscles or the frequency of polyploid nuclei be-
tween the single- and the double-mutant fetuses (data not
shown). Indeed, image cytometry analysis indicated that
the loss of neither E2F1 nor p53 had any measurable effect
on aberrant entry of Rb mutant muscles into an endoredu-
plicating cycle (Fig. 6A). TUNEL analysis during terminal
myogenesis in compound mgRb:Rb2/2:p532/2 and mgRb:
Rb2/2:E2F12/2 mutant fetuses revealed that apoptosis
was also not affected by the absence of E2F1 or p53 (Figs.
6B–6G). In contrast, apoptosis in the lens of mgRb:
Rb2/2:p532/2 fetuses was reduced over 10-fold (Figs.
6H–6I), in accord with previous reports (Morgenbesser et
al., 1994; Tsai et al., 1998). We conclude that in contrast to
the lens and CNS but similar to the PNS, Rb-deficient
skeletal muscles undergo ectopic DNA synthesis and apo-

ptosis through a pathway, yet to be defined, which is
independent of E2F1 and p53.
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DISCUSSION

Control of Myogenesis by Rb

In the absence of Rb, initial myoblast fusion and forma-
tion of multinucleated myotubes are near normal until
E15.5–16.5. Thereupon, myotubes become relatively
shorter presumably due to the accumulative effects of the
excessive apoptosis and endoreduplication that occur dur-
ing terminal myogenesis in the Rb-deficient fetuses. Ex-
pression of MCK but not several other muscle markers was
significantly reduced in E13.5–E15.5 embryos but gradually
elevated thereafter (Fig. 1). Thus, Rb is required for perma-
nent withdrawal from the cell cycle, otherwise apoptosis
and endoreduplication ensue, and for transcriptional acti-
vation of a subset of muscle genes (Fig. 7A). Although the
expression of MCK never reaches wild-type levels, the
gradual increase in MCK gene expression in Rb mutant
fetuses from E13.5 to E18.5, despite the ectopic DNA
synthesis, excessive apoptosis, and muscle degeneration, is
somehow puzzling. Other factors, perhaps p107 and p130,
may partially compensate for Rb loss. Alternatively, Rb
may be required to coordinate several aspects of cell cycle
exit and terminal differentiation but many Rb2/2 cells
may survive the initial crisis and continue to differentiate,
albeit less effectively, even in the absence of Rb. The latter
scenario is consistent with the observations that Rb2/2
cells can contribute efficiently to most adult tissues in
chimeric mice (Maandag et al., 1994; Williams et al.,
1994b).

Rb was shown to interact directly with myogenic factors
such as MyoD and myogenin (Gu et al., 1993) and the
adipogenic factor C/EBP (Chen et al., 1996) and to posi-
tively participate in transcriptional activation. These inter-
actions are, however, difficult to reproduce (Zhang et al.,
1999b) and the mechanisms by which Rb cooperates with
these factors are ill defined. Whereas a complex containing
Rb, E2F1, and an E2F-recognition site can readily be dem-
onstrated experimentally, analogous complexes containing
Rb, MyoD (or C/EBP), and the appropriate DNA binding
sites have not been observed (Chen et al., 1996; Gu et al.,
1993). Recently, a stable protein–DNA complex, containing
Rb, the bHLH protein tal-1, and other factors, that controls
erythroblast gene expression has been documented, directly
implicating Rb in regulating not only cell cycle exit but also
differentiation in a physiological context (Vitelli et al.,
2000). Rb was also shown to bind Pax3, an earlier muscle
factor that controls MyoD expression in body muscles
(Wiggan et al., 1998). Analysis of Rb2/2 fibroblasts engi-
neered to express myogenic factors indicates that transcrip-
tional activation by MEF2C is also affected (Novitch et al.,
1999). However, there are clearly some differences between
fibroblasts expressing myogenic factors and myoblasts. For
example, MyoD:Rb2/2 fibroblasts do not fuse well and fail
to express both MCK and MHC (Gu et al., 1993; Novitch et

al., 1996), whereas Rb2/2 myoblasts do form myotubes
and exhibit near-normal expression of MHC in vitro
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(Schneider et al., 1994) and in vivo (Figs. 4A and 4B). Other
pathways may impinge upon MCK gene expression in the
absence of Rb. It has recently been shown that Rb-deficient
fibroblasts have elevated levels of activated Ras and that
suppression of Ras activity in these fibroblasts restores
their ability to induce MyoD-responsive genes (Lee et al.,
1999). However, so far, we were unable to detect elevated
GTP-loaded RAS in mgRb:Rb2/2 muscles (Y. Liu and E.
Zacksenhaus, unpublished data). Our observation that Rb
controls the normal expression profile of MCK in vivo
should encourage additional analysis to explore the mecha-
nisms of this regulation in Rb mutant mice and myoblasts.

Cooperative Effects of Rb and p21Waf1/Cip1 during
Myogenesis

We demonstrated herein that nuclei in Rb-deficient myo-
tubes undergo bona fide endoreduplication leading to the
ccumulation of DNA up to 32N chromosomes and more
Fig. 2). Endoreduplication in human is rare and occurs only
n certain specialized lineages such as megakaryocytes
Zimmet et al., 1997). More often, endoreduplication is
ssociated with genomic instability, loss of cell cycle con-
rol, and neoplastic transformation. Although the loss of Rb
ormally leads to ectopic DNA synthesis or apoptosis,
here might be scenarios in which the transition through
2 is inhibited in Rb mutant cells, leading to endoredupli-

ation and genomic instability. Such a scenario was dem-
nstrated in Rb mutant cells overexpressing p21Waf1/Cip1 or

irradiated to induce p53 and endogenous p21Waf1/Cip1 (Ni-
culescu et al., 1998). In both cases endoreduplication oc-
curred only in cells lacking Rb. Rb was also implicated in
limiting rereplication and aneuploidy in human cells
treated with microtubule inhibitors (Khan and Wahl, 1998).
Thus, the endoreduplication observed in Rb mutant
muscles in vivo represents a pathological process that may
occur during the progression of cancer.

Although p21Waf1/Cip1 can induce endoreduplication in Rb
mutant cells in vitro, our genetic analysis revealed that
despite its high expression in mgRb:Rb2/2 myotubes,
inactivation of this CKI does not prevent endoreduplication
in mgRb:Rb2/2:p212/2 muscles. In fact, mgRb:Rb2/2:
p212/2 mutant embryos exhibited increased polyploidy
and apoptosis, reduced MCK gene expression and muscle
mass, and more severe bone defects (Figs. 3–5 and 7A). The
elevated cell death in mgRb:Rb2/2:p212/2 muscles may
be triggered by the increased cell proliferation that occurs
when both Rb and p21 are inactivated (Fig. 3) and/or may
reflect an anti-apoptotic effect of p21. The enhanced cell
proliferation despite the increased cell death in mgRb:
Rb2/2:p212/2 mutant muscles is consistent with the
accelerated tumorigenicity observed in Rb1/2:p212/2
mutant mice (Brugarolas et al., 1998). Embryos lacking both
p21 and p57 demonstrate muscle defects very similar to

those in Rb mutant fetuses, suggesting that Rb may be a
major target of these CKIs (Zhang et al., 1999). However,
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the enhanced muscle phenotype in mgRb:Rb2/2:p212/2

FIG. 3. Compound mutant fetuses lacking both Rb and p21Waf1/Cip

f p21 in a E17.5 mgRb:Rb1/2 control embryo (A) and a mgRb
ntercostal muscles; D, diaphragm; T, tongue. (C–F) Compoun
CNA-positive nuclei within myotubes. Arrow in F indicates a “c
orresponds to nuclei with 2N–4N chromosomes and classes 2
gRb:Rb2/2:p212/2 double-mutant fetuses exhibited increased
utants at E16.5. The increased endoreduplication is most eviden

espective class.
mutant embryos suggests that p21 likely regulates other
factors in addition to Rb. Thus, p21Waf1/Cip1 may modulate

a
e
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he activity of cyclin E/Cdk2 (Brugarolas et al., 1998; Mal et

ibit increased endoreduplication. (A, B) RNA in situ hybridization
/2 mutant littermate (B). Abbreviations: B, back muscles; IM,
tant fetuses, defective in both Rb and p21, exhibit increased
sed” nucleus. (G) Quantitative image cytometry analysis. Class 1
5 represent polyploid nuclei (see Materials and Methods). The
bers of 32N and .32N nuclei compared to mgRb:Rb2/2 single
the tongue (T). Numbers indicate the percentage of nuclei in the
1 exh
:Rb2

d mu
ollap

to
num
l., 2000) or cyclin-independent Cdk2 activity (Gil-Gomez
t al., 1998), the Rb-related proteins p107 or p130, myogenic
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FIG. 6. Endoreduplication and apoptosis in skeletal muscles of Rb-deficient fetuses are independent of E2F1 and p53. (A) Image cytometry
analysis of E18.5 mgRb:Rb1/2 control, mgRb:Rb2/2 single-mutant, and mgRb:Rb2/2:E2F12/2 and mgRb:Rb2/2:p532/2 compound-

utant fetuses. The absence of E2F1 or p53 does not significantly affect endoreduplication. (B–F) TUNEL analysis of muscle sections from
gRb:Rb1/2 control, mgRb:Rb2/2 mutant, and mgRb:Rb2/2:E2F12/2 and mgRb:Rb2/2:p532/2 compound-mutant fetuses. (B)

Skeletal muscles in control fetuses exhibit no apoptotic activity. The arrow indicates apoptotic nuclei in skin epithelia. Arrow in (C)
indicates a rare, large apoptotic cell in Rb mutant fetuses. (G–I) TUNEL analysis of mgRb:Rb2/2 and mgRb:Rb2/2:p532/2 fetuses

demonstrating suppression of apoptosis in the absence of p53 in lens but not muscles of Rb-deficient fetuses. The image of skeletal muscles

in (G) was taken from an area adjacent to the lens of the mgRb:Rb2/2:p532/2 mutant embryo shown in (I).

FIG. 4. Compound mutant fetuses lacking both Rb and p21Waf1/Cip1 exhibit reduced muscle mass and increased apoptosis. (A–C)
Immunohistochemical staining of E16.5 Rb mutant fetuses with antibodies reactive to myosin heavy chain (fast). The myotubes in
mgRb:Rb2/2:p212/2 mutant muscles are shorter, are less organized, and contain many collapsed nuclei (red arrowheads) (original
magnification, 103). (D–F) H&E staining demonstrating giant (black arrows) and collapsed (red arrowheads) nuclei in E16.5 mgRb:
Rb2/2:p212/2 mutant muscles (403). (G–I) Fluorescence microscopy of muscle sections stained with Hoechst 33258. Purple arrows point
to condensed nuclei; yellow arrows indicate large collapsed nuclei. (J–L) TUNEL analysis showing increased apoptosis in E16.5 mgRb:
Rb2/2:p212/2 mutant muscles compared with mgRb:Rb2/2 littermates. Both TUNEL-positive (yellow arrowheads) and TUNEL-
negative (red arrowhead) collapsed nuclei are observed in mgRb:Rb2/2:p212/2 mutant (L, top and bottom). Purple arrows indicate
apoptotic nuclei of regular size. (J) The number of TUNEL-positive nuclei represents the average from three different areas counted at 403
magnification from three independent mgRb:Rb2/2 and mgRb:Rb2/2:p212/2 fetuses.
FIG. 5. Compound mutant fetuses lacking both Rb and p21Waf1/Cip1 exhibit more severe skeletal defects. Skeletons were stained with
Alizarin red (ossification centers) and Alcian blue (cartilage). (A, B) Limbs of mgRb:Rb1/2:p211/2 and mgRb:Rb2/2:p212/2 compound-
mutant fetuses at E17.5. The mutant limb is smaller, but the ossification centers in the metacarpal and phalangeal bones indicate a similar
developmental stage. (C, D) Higher magnification of the humerus demonstrating lack of deltoid tuberosity in mutant fetuses (arrows). (E,
F) Higher magnification of the scapula of E16.5 mgRb:Rb2/2:p212/2 mutant and control littermate fetuses. The mutant scapula appears
more brittle/perforated and lacks defined boundaries between bone and cartilage. (G, H) Sternum of mgRb:Rb2/2 mutant and control
littermate at E16.5. (I, J) Sternum of mgRb:Rb2/2:p212/2 mutant and control littermate at E17.5. In both pairs, the xiphoid process at the
end of the sternum is abnormally developed in the mutant fetuses (arrows). Note the abnormal ossification of the sternum in the
double-mutant fetus (upper arrow in J) and that the ribs join the sternum at 90° in the double mutant but at a smaller angle in control or

single-mutant fetuses. The reduced concentrations of KOH used to obtain intact skeletons of the more fragile mgRb:Rb2/2:p212/2
double-mutant fetuses yielded incomplete clearing of the skeleton preparations in A–D and I–J.
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factors (Zhang et al., 1999a), or survival factors such as AKT
(Fujio et al., 1999).

E2F1- and p53-Dependent and Independent
Apoptotic Pathways Downstream of Rb

We demonstrated herein that both endoreduplication and
apoptosis in Rb mutant muscles are independent of E2F1
and p53 (Fig. 6). In accord with our results, recent analysis
has demonstrated that myoblasts and other cell types can
undergo p53-independent apoptosis in vitro (Cerone et al.,
2000; Fimia et al., 1998; Agah et al., 1997). These and other
studies (Macleod et al., 1996; Tsai et al., 1998) indicate that
there are at least two pathways that control cell cycle
progression and apoptosis in Rb-deficient mice (Fig. 7B). In
the CNS and lens, ectopic DNA synthesis and programmed
cell death are mediated through E2F1- and p53-dependent
pathways. In the PNS, loss of E2F1 reduces to some degree
inappropriate entry into S phase, but there is still substan-
tial cell proliferation and apoptosis in the Rb–E2F1 double
mutants (Tsai et al., 1998). Thus, in the PNS and skeletal
muscles, the E2F1/p53 pathways do not operate or are
redundant. Interestingly, we have recently found that Apaf1
is required for apoptosis in the CNS and lens but less so in
PNS and skeletal muscles (Z. Guo, T. Mak, and E. Zack-
senhaus, unpublished data). The elucidation of this E2F1/
p53/Apaf1-independent pathway(s) is important as it may
be disrupted during the progression of tumors in which the
p53 pathway is intact. Curiously, however, p53 is often
inactivated in rhabdomyosarcoma, a pediatric cancer of
skeletal muscles (Diller et al., 1995), indicating that p53
may play an important role in muscle physiology at least in

FIG. 7. Distinct pathways downstream of Rb in muscles and othe
the Cdk inhibitors p21Waf1/Cip1, E2F1, and p53 in aberrant myogene
ndoreduplication; reduced expression of MCK and MRF4, but not
re augmented by the loss of p21Waf1/Cip1 but not by loss of E2F1 or p
2F1 and p53 mediate ectopic DNA synthesis and apoptosis. In sk
ccur through a pathway(s), yet to be defined, which is independe
some contexts that are presumably different from the cell
death observed during myogenesis in Rb-deficient mice.
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Rb and Bone Development

Most of the bone defects observed in the mgRb:Rb2/2
etuses, which are further augmented in mgRb:Rb2/2:

p212/2 compound mutants, likely reflect an indirect con-
sequence of muscle degeneration, as they are also observed
in myogenin knockout mice. The relatively shortened
limbs and brittle/pierced appearance of the bones in mgRb:
Rb2/2:p212/2 fetuses (Fig. 5) may, however, represent an
autonomous role for Rb in bone development. A require-
ment for Rb in bone development would be in accord with
the increased risk for osteosarcoma in individuals with
germ-line mutations in Rb (Weichselbaum et al., 1988).
Notably, ectopic expression of Rb in the Rb mutant osteo-
sarcoma cell line Saos-2 induces differentiation (Sellers et
al., 1998), indicating that Rb can be a limiting factor in
osteoblast differentiation. Mutant mice devoid of both p107
and p130 display increased chondrocyte density, delayed
endochondral bone formation, and short limbs (Cobrinik et
al., 1996). In this regard, it will be of interest to test
mgRb:Rb2/2:p1072/2 and mgRb:Rb2/2:p1302/2 mu-
tant fetuses for synergistic effects of Rb and its relatives on
development of the bone as well as skeletal muscles and
other tissues.
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